Fishing activity and seabird-vessel attendance near the Northern Antarctic Peninsula

Jarrod A. Santora, Kimberly S. Dietrich & Darci L. Lombard Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037 USA (jasantora@gmail.com)

Introduction

- Seabirds are attracted to vessels at sea.
- Although seabirds may view fishing vessels as a source of food, there are potential negative interactions between fishing activities and seabirds (Montevecchi 2002).
- Several studies report significant differences in seabird abundance around fishing trawlers (Gonzalez-Zevallos & Yorio 2006; Sullivan et al. 2006; Weimerskirch et al 2000)

Results

- Three species, the Black-browed Albatross Thalassarche melanophris, Cape Petrel Daption capense and Wilson's Storm-Petrel Oceanites oceanicus were the most common seabirds attending the vessel (Table 1).
- Abundance of seabirds did not differ among fishing activities (Table 2).

Table 2 Significance of variables in GAM models
 assessing seabird-vessel attendance for the three most abundant seabirds. CAPE: cape petrel; BBAL: blackbrowed albatross; WISP: Wilson's storm-petrel. Number in parentheses is percent deviance explained by the model.

Variable - Species	CAPE (69%)	BBAL (56%)	WISP (38%)
Vessel activity	-	-	-
Discards	0.02323	0.02620	-
Vessel Speed	-	-	-
Position	0.00000	0.00000	0.00000
Visibility	0.00000	-	0.00297
Wind Speed	-	-	-
Air Temperature	-	-	-
Pressure	-	0.00000	-

 Seabirds may be injured or killed during trawling activities through collision with various cables or entanglement in gear (Bartle 1991)

• We conducted a survey to investigate the factors influencing the number of seabirds attending a research vessel during scientific trawling activities near the northern Antarctic Peninsula (Figure 1).

• Our objective was to assess whether seabirds exhibited differing levels of attendance that may be attributed to fishing activity.

Figure 1: Map of trawling locations during February-March 2006; AP=Antarctic Peninsula, EI=Elephant Island, KGI=King George Island, JI=Joinville Island

Methods

• Bird counts every 30 minutes during non-fishing times and every 5 minutes during net deployment, towing and retrieval

• The presence of discard caused an increase in numbers of petrels and albatrosses (Figure 3).

• No seabird mortality was observed.

Table 1 Species observed and frequency of occurrence

Common Name	Species Name	Total	%Tota
Cape Petrel	Daption capense	1421	40.0
Black-browed Albatross	Thalassarche melanophrys	1026	28.9
Wilson's Storm Petrel	Oceanites oceanicus	625	17.6
Southern Fulmar	Fulmarus glaciodes	209	5.9
Giant Petrel spp.	Macronectes spp.	188	5.3
Grey-headed Albatross	Thalassarche chystostoma	38	1.1
Snow Petrel	Pagodroma nivea	9	0.25
Skua spp.	Catharacta spp.	8	0.2
Antarctic Tern	Sterna vittata	8	0.2
White-chinned Petrel	Procellaria aquinocitalis	5	0.1
Black-bellied Storm Petrel	Fregetta tropica	4	0.1
Gentoo Penguin	Pygoscelis papua	4	0.1
Chinstrap Penguin	Pygoscelis antarctica	2	0.05
Snowy Sheathbill	Chionis alba	2	0.05
Prion spp.	Pachyptilla	1	0.03
Wandering Albatross	Diomedea exulans	1	0.03
TOTAL		3551	

Figure 3 Attendance of species by vessel activity. CAPE: cape petrel; BBAL: black-browed albatross; WISP: Wilson's storm-petrel; ANFU: Antarctic fulmar; GIPE: giant petrel. Numbers in parentheses are sample size for each activity type. Bars are standard errors.

- Observation zone 300-m hemisphere at stern (Figure 2)
- Monitored environmental variables and discards
- Separate Generalized Additive Models (GAMs) used to determine factors influencing attendance for 3 most abundant species

Figure 2 Observation zone for estimating seabird abundance

Discussion

• Our study is the first to examine seabird-vessel attendance to scientific trawling activities in Antarctic waters where there is a moratorium on commercial finfish fishing.

• By comparison to other studies, the level of fishing conducted during this study is not anywhere near that of commercial fishing (i.e., catch rate and fishing duration).

• It is important to monitor seabird attendance to fishing vessels so that proper mitigation and conservation actions are met to protect seabirds.

Literature Cited

• Bartle, J. A. 1991. Bird Conserv. Int. 1:351-359.

• Gonzalez-Zevallos, D., and P. Yorio. 2006. Marine Ecology Progress Series 316:175-183. • Montevecchi, W. A. 2002. Interactions between fisheries and seabirds. in E. A. Schreiber and J. Burger, editors. Biology of Marine Birds. CRC Press, Boca Raton. • Sullivan, B. J., T. A. Reid, and L. Bugoni. 2006. Biological Conservation 131:495-504. • Weimerskirch, H., D. Capdeville, and G. Duhamel. 2000. Polar Biology 23:236-249.

Acknowledgements

We thank Christopher Jones for the opportunity to collect the data during the US AMLR demersal finfish trawl survey on the R/V Yuzhmorgeologiya.

